アンテナの基礎と高効率平面アンテナの設計 一最新ミリ波・マイクロ波アンテナの基礎技術として一

Antenna Basics and Design of High Efficiency Planar Antennas -Fundamentals of Recent Millimeter-Wave and Mircowave Antenna Technologies-

安藤 真 広川 二郎 Makoto ANDO and Jiro HIROKAWA

東京工業大学大学院電気電子工学専攻 〒152-8552 東京都目黒区大岡山 2-12-1 Dept. of Electrical and Electronic Eng., Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan

E-mail: {mando, jiro}@antenna.ee.titech.ac.jp

Abstract

This seminar presents the basics for antenna technologies in millimeter-wave bands such as Friis transmission formula for line-of-sight free-space propagation and the loss of feed lines in array antennas. The design of series-fed reflection-canceling non-resonant slot arrays is discussed, where the amplitude and the phase are controlled easily by the slot length and the spacing. Technologies such as the post-wall waveguide and the diffusion bonding of laminated thin metal plates are demonstrated for realizing low-loss millimeter waveguides.

1. はじめに

近年のミリ波・マイクロ波通信や各種センシング 技術の躍進を支える最新のアンテナ技術を幅広く理 解するための基礎についてまとめる。無線技術では アンテナは必須の要素である。ブロードバンド時代, 無線のデジタル化, IP 化, ソフトウェア化の中で, 求められる性能や評価指標は大きく様変わりしてい るものの, アンテナ工学そのものは極めて古典的な 技術であり, 普遍の原理が多々ある。本講座では, この原理を分かりやすく説明するとともに, 高周波 での高効率平面アンテナの設計法についても説明す る。また, ミリ波における製作精度や低廉化, 量産 性向上につながる低伝送損失導波路製作の試みにつ いても言及する。

2. アンテナの基礎

2.1. フリスの伝送公式

ミリ波帯は周波数が高く波長が短いため直進性が 強い。したがって、ミリ波のように高い周波数では、 基本的に送信アンテナと受信アンテナがお互いに見 えるようにし、直接波で伝送が行われる。図1に示 すように、送信アンテナと受信アンテナが距離 rだ け離れて置かれている。送信電力を P_t 、送信アンテ

ナの利得をG_t,送信アンテナと受信アンテナ間の偏

波整合効率を η_p ,受信アンテナの実効開口面積を S_r

とすると、受信電力 Pr は以下の式で与えられる。

$$P_r = \frac{P_t}{4\pi r^2} G_t \eta_p S_r \tag{1}$$

で与えられる。

図1 フリスの公式の適用

アンテナのある方向での利得*G*は,その方向に距 離*r*だけ離れた位置での電力密度*p*を用いて次式で 定義される。

$$G = \frac{p}{P_t / 4\pi r^2} \tag{2}$$

ここで分母は送信アンテナが等方性波源の場合に距離 r だけ離れた位置での電力密度を表わす。したが

って,
$$rac{P_t}{4\pi r^2}G_t$$
は受信アンテナの位置での送信アンテ

ナの電力密度を表わすことになる。

 η_p は送信アンテナの偏波単位ベクトル \hat{p}_t と受信 アンテナの偏波単位ベクトル \hat{p}_r を用いて次式で与 えられる。

 $\eta_p = \hat{p}_t \cdot \hat{p}_r \tag{3}$

例えば、垂直偏波の偏波単位ベクトルを $\hat{p}_v = \hat{x}$ 、水 平偏波の偏波単位ベクトルを $\hat{p}_h = \hat{y}$ としたとき、+z 方向に進行する右旋円偏波と左旋円偏波の偏波単位 ベクトルはそれぞれ $\hat{p}_r = (\hat{x} - j\hat{y})/\sqrt{2}$ と

電力は電力密度と実効開口面積で求められるので、 受信電力は式(a)となる。

利得 Gと実効開口面積 Seには次式の関係がある。

$$G = \frac{4\pi}{\lambda^2} S_e \tag{4}$$

ここで,λは自由空間波長である。式(4)を式(1)に代 入すると次式が得られる。

$$P_r = P_t G_t G_r \eta_p \left(\frac{\lambda}{4\pi r}\right)^2 = P_t G_t G_r \eta_p \frac{1}{L_p} \tag{5}$$

ここで、 L_p は自由空間損失と呼ばれrの2乗に比例 する。例えば、60GHz では λ =5mm であるので r=1m=1000mm での L_p は 68dB となる。距離が 10 倍 になれば L_p は 20dB 増加する。

2.2. アンテナの効率

アンテナの送信電力
$$P_i$$
は,給電点への入力電力 P_i ,

給電点でのインピーダンス整合効率 η_m ,放射効率 η_r を用いて次式で与えられる。

$$P_r = P_i \eta_m \eta_r \tag{6}$$

 η_m は、給電点での反射係数 Γ を用いて次式で表わされる。

$$\eta_m = 1 - \left| \Gamma \right|^2 \tag{7}$$

また、 η_r はアンテナを構成する材料による損失に より決まる。

利得 G は,指向性利得 D などを用いて,次式で表 わされる。

$$G = D\eta_m \eta_r \tag{8}$$

ここで、D は指向性だけで決まる利得であり、アンテナの面積Sと、開口効率 η_a の関数として次式で 与えられる。

$$D = \eta_a \frac{4\pi}{\lambda^2} S \tag{9}$$

 η_a はアンテナの開口分布だけで決まる。例えば、

一様分布の場合には $\eta_a = 1$ となる。

式(9)を式(8)に代入すると、次式のようになる。

$$G = \eta_m \eta_r \eta_a \frac{4\pi}{\lambda^2} S \tag{10}$$

与えられた面積Sに対し、利得Gを高くするには、

整合効率 η_m ,放射効率 η_r ,開口効率 η_a のそれぞれ

を1に近づける必要がある。言い換えれば、反射損, 材料損,開口非一様損のそれぞれを抑える必要があ る。

2.3. アレーアンテナの指向性とビーム幅

アンテナの面積*S*を大きくすると利得*G*は高くな る。平面アンテナでは素子数を多くすることに相当 する。アレーアンテナの各素子アンテナを例えば同 じ振幅で励振した場合,実際には素子アンテナ間の 相互結合のため,各素子アンテナ上の波源分布は厳 密には同じにならない。しかし,一般には各素子ア ンテナの波源分布の差を無視してもおおよそ説明で きる。したがって,各素子アンテナ上の波源分布は 同じとし,各素子アンテナの指向性は同じものと仮 定することで,素子アンテナの種類や特性に依存し ないアレーアンテナとしての指向性を説明できる。

図2 直線アレーアンテナ(等間隔)

図2で示すz軸に沿って等間隔dで配列されたN 個の素子アンテナからなる直線アレーアンテナの指 向性は次式で与えられる。

$$F(\theta,\phi) = g(\theta,\phi) \sum_{n} a_{n} \exp(jnu)$$
(11)

 $g(\theta, \phi)$ は素子アンテナの指向性, a_n はn番目の素

子アンテナの複素励振振幅である。 $u \, \mathrm{d} \, u = k_0 d \cos \theta$

で、 k_0 は自由空間での波数であり $2\pi/\lambda$ で与えられる。

式(k)において、 $g(\theta, \phi)$ を除いた係数をアレーファク

タとよぶ。これはアレーアンテナでの励振強度と配 列にのみで決まる。

式(k)より,アレーアンテナの指向性は素子指向性 とアレーファクタを掛け合わせたものであり,また アレーアンテナの励振分布のフーリエ変換の形で表 わされていることがわかる。素子数が少ない時には ビーム幅は広くなり,素子数が多い場合にはビーム 幅は狭くなる。また,素子数が少ない場合にはビーム 幅は狭くなる。また,素子数が少ない場合にはアレ ーファクタの指向性は広いので素子の指向性により アレーアンテナの指向性を狭くしてその指向性利得 は高くできるが,素子数が多い場合にはアレーファ クタの指向性がすでに狭いので素子の指向性ではア レーアンテナの指向性をさらに狭くすることはでき ない,すなわちその指向性利得は高くできないこと に注意すべきである。

素子数 N が大きい場合の直線アレーアンテナのア レーファクタの 3dB ビーム幅と指向性利得はそれぞ

れ 2
$$\left\{ \frac{\pi}{2} - \cos^{-1}\left(\frac{1.391\lambda}{\pi Nd}\right) \right\}$$
 (ただし、 $\pi d \ll \lambda$)と 2 $N\left(\frac{d}{\lambda}\right)$
(ただし、 $N\pi d \gg \lambda$) で近似される[1]。

図3 平面アレーアンテナ(4角配列) 図3の4角配列平面アレーアンテナにおいて, *x* 軸方向にn番目, *y*軸方向にm番目の素子アンテナ の複素励振振幅を*a_{nm}*とすると, アレーファクタ

 $E(\theta, \phi)$ は次のように表される。

$$E(u,v) = \sum_{n} \sum_{m} a_{nm} \exp\{j(nu+mv)\}$$
(12)

 $\Box \subset \heartsuit, \quad u = k_0 a \sin \theta \cos \phi, \quad v = k_0 b \sin \theta \sin \phi \heartsuit \delta_\circ$

複素励振振幅 a_{nm} は、普通、 $a_{nm} = a_n a_m$ のよう

に, x 軸方向の複素励振振幅(分布) an と y 軸方向の複

素励振振幅(分布)amの積で与えられることが多い。

この場合、式(l)は次のようになる。

$$E(u,v) = \sum_{n} a_n \exp(jnu) \sum_{m} a_m \exp(jmv)$$
 (13)

すなわち,平面アレーアンテナのアレーファクタは2 つの軸方向の直線アレーアンテナのアレーファクタ の積の形で表される。

2.4. 給電線路の損失

図4に線路の高さに対する給電線路の損失を低席 的に示す。給電線路には,導体損,誘電体損,放射 損がある。導体損は,線路に導体を用いた場合に線 路表面上に流れる電流による損失であり,線路の高 さに電流密度がほぼ反比例するので同様に導体損も 反比例になる。誘電体損は,線路に誘電体を用いた 場合に線路体積中の電界により生じる。これはほぼ 線路の高さに対し一定になる。放射損は,開放系線 路の場合に線路の曲がりや分岐などの不連続により 生じる。これは一般に線路が高くなると増加する。 マイクロストリップ線路などの開放系線路の場合に は、これら3つの損失の和になるため,図4のよう にある高さで極小値を取る。それに対し,導波管は 閉鎖系の線路であるため放射損がなく,図4のよう に高さが多くなると単調に減少する。しかしあまり 厚くすると所望の基本モード以外に不要な高次モー ドが伝搬してしまう。

図4 給電線路の損失

誘電体の損失を表すパラメータとして誘電正接 tan *d*があり、これは複素比誘電率の実部と虚部の比で 次式のように定義される。

$$\varepsilon_r = \varepsilon_r ' - j\varepsilon_r " = \varepsilon_r ' (1 - j \tan \delta)$$
(14)

線路の伝搬定数 γ は $tan\delta$ が十分1より小さいとき次式 で近似できる。

$$\gamma = \alpha + j\beta = j\sqrt{\varepsilon_r}k_0 \cong j\sqrt{\varepsilon_r'}k_0 + \frac{1}{2}\sqrt{\varepsilon_r'}k_0 \tan\delta \quad (15)$$

したがって, 誘電体損α, は次式のようになる。

$$\alpha_d \cong \frac{1}{2} \sqrt{\varepsilon_r} k_0 \tan \delta \tag{16}$$

誘電体損を低減するには、tan の小さい材料を用いる 必要がある。

導体の損失を表すパラメータとして導電率 σ がある。導体の表面インピーダンス Z_s は、導体では

σ≫ωε であるので,次式で近似できる。

$$Z_s = R_s + jX_s = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}} \cong \frac{1+j}{\sqrt{2}}\sqrt{\frac{\omega\mu}{\sigma}}$$
(17)

よって,表面抵抗 R_sは以下のようになる。

$$R_s \cong \sqrt{\frac{\omega\mu}{2\sigma}} = \frac{1}{\delta\sigma} \tag{18}$$

ここで、6は表皮の厚さであり次式で与えられる。

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} \tag{19}$$

δは電磁界強度が導体表面での値の 1/e(=-8.68dB)と

なる深さで定義される。また、周波数と導電率のそれぞれの平方根に反比例する。実用上は、3*8*から58 程度の厚さの導体があれば十分と考えられる。例え

ば, 銅の標準導電率5.76×10⁷を用いた場合, 周波数 60GHz ではδ=0.27μm となる。基板に貼られている銅 箔はその接着法などにより実効導電率が異なる。

伝送電力Pの減衰量PがPの単位長さあたりの減

衰に相当することから、次式の関係がある。
$$P_l = -\frac{\partial P}{\partial z} = -\frac{\partial}{\partial z} \left(P_0 e^{-2\alpha z} \right) = 2\alpha P_0 e^{-2\alpha z} = 2\alpha P \quad (20)$$

線路の減衰定数αは,以下のようになる。

$$\alpha = \frac{1}{2} \frac{P_l}{P} = \frac{1}{2} \frac{\int R_s \left| \boldsymbol{H} \right|^2 dl/2}{\int \boldsymbol{E} \times \boldsymbol{H}^* \cdot ds/2}$$
(21)

ここで、電磁界の正弦(複素)振幅は波高値で定義され ていることに注意する。分子は単位長さの導体上で の積分であるのに対し、分母は線路断面での積分で ある。

放射損は、線路の曲がりや分岐などの不連続で局 所的に発生するものである。また、誘電体損や導体 損では前で述べたように式の形で表現できるが、放 射損は電磁界解析を行って数値的に求める必要があ る。例えば、厚さ 0.127mm で比誘電率が 2.20 の基板 上のマイクロストリップ線路(50Ω)の 90 度曲がりや T 分岐(等分配)の放射損は Emsemble(ver.5)の解析で は、両方とも約 0.09dB である。いずれも放射損が少 なくなるよう反射を-30dB 以下に抑圧している。

厚さ 0.127mm で比誘電率が 2.20, tan &=0.006 の誘

電体基板に厚さ 18 μ m,幅 0.38mm で σ = 5.76×10⁷の 銅箔により構成されたマイクロストリップ線路の誘 電体損と導体損は 60GHz においてそれぞれ 0.037dB/cm と 0.209dB/cm である[2]。導体損が全体の 約 85%を占めている。それに対し、広壁幅 3.76mm,

狭壁幅 1.88mm の σ = 5.76×10⁷の銅の方形導波管の 導体損は 60GHz において 0.015dB/cm となり[2]、マ

イクロストリップ線路の伝送損失の約6%と小さい。

2.5. アレーアンテナの給電

アレーアンテナの給電には、図5に示すように並 列給電と直接給電の2つがある。もちろん、1つのア レーアンテナに両者の給電を組み合わせたものもあ る。設計周波数で同相励振の場合、並列給電では各 素子と給電点の距離はすべて同じなるため、周波数 が変化しても各素子は同相で給電されることになる。 一方,直列給電では各素子と給電点の距離が異なる ため,周波数が変化すると各素子の励振位相が異な るため利得が低下してくる。アレーの素子が大きく なるとその低下量は大きくなる。並列給電では,ア レーの素子数が大きくなると,全給電線路長が長く なり,分岐数も増加してくる。マイクロストリップ 線路のようにミリ波での伝送損失が大きい場合,問 題になってくる。図1において並列給電を1段増やす と素子数(=面積)は4倍(=6dB)増える。しかし,給電 線路の誘電体損,導体損の増加分と分岐の放射損の 増加分の和が6dBを超えた場合,アレーの大きさを 大きくしても利得は上昇しないことになる。

図5 アレーアンテナの給電

3. 高効率平面アンテナの設計

ここでは、高効率平面アンテナの設計の一例とし て、反射抑圧横方向スロットペア[3]を素子として用 いた直列給電の導波管1次元アレーアンテナについ て述べる。2次元スロットアレーの場合についても、 放射導波管スロットアレーと給電回路素子アレーを 別々に設計するが各アレーの設計手順は同じである。 まず、設計手順を大きく分けると以下のようにな

- る。
- (i) 素子設計
- (ii) 各素子の励振係数の決定
- (iii) 各素子のパラメータと間隔の初期アレー設計
- (iv) 全構造解析による各素子のパラメータと間隔の修正

3.1. 素子設計

図6に素子設計モデルを示す。方形導波管広壁上 に2本のスロットが管軸方向に垂直に切られている。 ここでは,2本のスロットの中心が管軸の中心に一致 しているが, 平行平板導波路上に設ける場合には, 左右にオフセットさせる[3]。これはスロット間の相 互結合を低減してスロットペアとしての放射量を増 加させるためである。外部領域には、進行方向と横 方向にそれぞれ周期境界壁ペアを設けた方形導波管 を仮定する。これは、等振幅励振された 2 次元無限 アレーでの素子間相互結合を考慮したものである。1 次元アレーでもこのモデルで素子設計を行う。平行 に配列されたスロット間の相互結合は強いので、素 子間結合は進行方向に強く横方向には弱くなる。ま た、周期境界壁方形導波管内の相互結合は導波管モ ードの和の形で解析的に高速に求められるが、進行 方向だけに周期境界壁ペアを用いた場合にはそ相互 結合はスペクトル領域法で数値的に求める必要があ り時間がかかる。さらに、素子設計は初期設計であ り、最終的には全構造解析により外部領域の相互結 合を正確に評価して素子パラメータは修正される。

素子設計におけるパラメータは2本のスロット#1, #2 の長さ $l_1 \ge l_2$ そして間隔dである。 l_2 を与え,反 射が抑圧されるように $l_1 \ge d$ を求める。このときの 放射量 $|S_{31}|^2$,放射位相 $\angle S_{31}$,透過位相 $\angle S_{21}$ を求め ておく。

図6 素子設計モデル

3.2. 各素子の励振係数の決定

図 2 に示す N 素子直線アレーの n 番目の素子の複 素振幅を a_n とすると、アレーファクタE(u) は次式 で与えられる。

 $E(u) = \sum_{n} a_{n} \exp(jnu)$ (22)

ここで、 $u \ \mathrm{lt} u = k_0 d \cos \theta$ であり、 $E(u) \ \mathrm{lt} - \pi \le u \le \pi$ の範囲で決まる。

ー様励振の場合には $a_n = 1 \ barbox barbox$

3.3. 各素子のパラメータと間隔の初期アレー設計

各素子の反射は抑圧されているため, n 番目素子の 放射量 $|S_{31}|^2(n)$ は電力保存則から次式で求められる。

$$|S_{31}|^{2}(n) = \frac{|a_{n}|^{2}}{\sum_{i=n}^{N} |a_{i}|^{2}}$$
(23)

 $|S_{31}|^2(n)$ が決まれば 3.1 で求めた関係から、 $l_1(n)$ 、

 $l_2(n)$, d(n)が決まる。また、放射位相 $\angle S_{31}(n)$ (度)

と透過位相 $\angle S_{21}(n)$ (度)を求めておく。

図 7 に初期アレー設計モデルを示す。励振位相は 素子間隔で制御できる。n 番目と n+1 番目の素子の 間隔s(n)は位相整合条件の次式から求められる。

$$\angle S_{31}(n) - 360 = \angle S_{21}(n) - 360 \frac{s(n)}{\lambda_g} + \angle S_{31}(n+1) (24)$$

図7 隣接素子位相整合

3.4. 全構造解析による各素子のパラメータと間隔の修正

放射導波管スロットアレーでは,外部領域での実 構造と素子設計モデルでの相互結合の状況がことな るため,すべての素子を考慮した全構造解析により, 各素子のパラメータと間隔を修正する。導波管の内 部領域を固有関数展開法で解析をするので,素子数 が多くても計算時間は短く繰返し計算が可能である。 また,モーメント法によりスロット上の磁流を未知 数として解析をするため,素子ごとに遠方界の振幅 と位相,反射量が計算できる。解析結果を踏まえ, 振幅は素子のスロット長で,位相は素子間隔で,反 射量は素子内のスロット間隔で制御する。

4. ミリ波低損失導波管の試み

4.1. ポスト壁導波路

ポスト壁導波路は、図 8 に示すように両面銅貼誘 電体基板に金属ポストを 2 列に密に配列したもので ある。著者らは 1997 年からポスト壁導波路を用いた アンテナの検討を進めている [5][6]。 "laminated waveguide"[7] あるいは "substrate integrated waveguide"[8]とも呼ばれているが、伝搬の原理は同 じである。誘電体基板にスルーホールを設けその壁 面をメッキして構成でき、従来のプリント基板加工 技術により安価に製作できる。

図8 ポスト壁導波路

図9に76.5GHzにおける伝送損失の計算値を示す。 誘電体損,基板両面の導体損,ポストの導体損に分けて表示している。用いたパラメータは図 a に示した通りである。基板の厚さは0.762mm であり,比誘 電率 ε_r を考慮した波長で規格化すると0.286 $\lambda_0/\sqrt{\varepsilon_r}$ である。ここで、 λ_0 は自由空間波長である。基板を 厚くして導体損を低減することが重要である。基板 は0.5 $\lambda_0/\sqrt{\varepsilon_r}$ まで厚くできる。単位長さあたりの伝 送損失は0.17dB/cm であり、実験でも同程度の結果 が得られている。図 9 から分かるように誘電体損が 全体の損失の約2/3 を占めており,損失の少ない誘電 体を用いることが重要である。

図9 伝送損失

ポスト壁導波路技術により,図10に示すように導 波管スロットアレーアンテナとバトラーマトリック スのようなビーム切替回路を一体に製作でき[9],そ れぞれを別体で製作して接続する際の接続損をなく すことができる。図10において,バトラーマトリッ クス内に設けられた穴は大きさを半減するために用 いられており実際に使用ではアルミテープ等でふさ

4.2. 空気層装荷誘電体平行平板線路

一様励振ポスト壁導波路給電平行平板スロットア ンテナ[5]は, 61.25GHz において大きさ 20~80mm 四 方で利得 21~33dBi の利得を効率 60~55%で実現し ている[10]。用いている PTFE 基板の誘電体損により 効率が主に低下していると考えられる。そこで、図 11 に示すような誘電体基板の中央に空気層を装荷し た平行平板線路を提案した[11]。空気層の装荷には下 記の3 つの特長がある。(i)誘電体損が低減される。 図 12 に厚さ 0.6mm,比誘電率 2.6, tan &=0.0008 の誘 電体基板に厚さ h の空気層を中央に設けた場合の等 価比誘電率と誘電体損低減率の計算値を示す。例え ば, h=0.3mmの場合, 誘電体損は75%低減される。 またこの時、導体損は14%少なくなり、全伝送損失 は 38%低減される。(ii)等価比誘電率が低減される。 放射スロットアレーは直列給電されるため、アレー の利得の帯域は長線路効果により比誘電率の平方根 にほぼ反比例する。図 12 より h=0.3mm のとき等価 比誘電率は 1.5 となるため帯域は 30%広くなると見 積もれる。(iii)側壁部がハード境界壁として動作する。 側壁部の誘電体幅を適切に選ぶことで、空気層との 端面がハード境界壁として動作し空気層領域での電 磁界の横方向分布の一様性が実現できる。

現在のところ, PTFE では厚さ 0.9mm の基板に空 気層を厚さ 0.4mm, 大きさ 45mm 四方で挿入したも のが,しわなく作成できている。また,LTCC につい ても基板の厚さの半分程度まで空気層を挿入したも のができている。LTCC の場合,アンテナと RF 回路 が一体でできる可能性がある。LTCC は比誘電率が 5 以上と大きく高利得の直列給電アレーアンテナは帯 域の観点で難しかったが,空気層の挿入により実現 できるものと期待される。

4.3. 積層薄板の拡散接合による中空導波管

積層した薄い金属板を拡散接合して中空導波管を 製作する方法を提案している[12]。図 13 に示す一層 構造導波管スロットアレー[13][14]を 94GHz 帯で試 作した。スロット板, 導波路部, 給電ステップ開口 部の3種類のパターンをエッチングした薄い金属板 を積層して構成する。最下層部は測定用の WR10 導 波管とねじで接続するためであり実用上は不要であ る。ダイキャスト等での型が不要でエッチングパタ ーンの数も少ないので, 安価に製作できると期待さ れる。寸法は基本的には周波数に反比例して小さく すればよいが、製作上の制限がある場合にはそれを 設計に取り込む必要がある。今回の場合、スロット 板の電気的厚さは従来の25GHz帯に比べ大きくなっ ているが、共振スロットを用いているため、厚くな ってもスロットアレーの帯域が狭くなることはない。 またT分岐の給電窓の厚さを1.0mmとやはり厚くし ているが、給電窓は共振幅よりも狭くカットオフに なっているため、厚くすると T 分岐の帯域は狭くな った。

ー様励振の 18x18 素子アレーを設計し, 銅とステ ンレスで製作した。アンテナの大きさは 60×55mm である。図 14 に利得を示す。印付の実線は導体損を 考慮した HFSS での解析値である。導体損失はステ ンレスが 2.12dB で銅は 0.34dB である。実線と波線 は測定値である。銅では 93.7GHz でピーク利得 31.4dB を効率 60%で実現した。93.7GHz で放射導波 管方向に約 14dB のテーパが近傍界分布に見られ開 口効率が 69%まで劣化している。スロットのオーバ ーエッチングが考えられ, それを改善することでさ らに 0.8dB の利得向上が期待される。

4.4. シリコン CMOS チップ一体アンテナ

近年,シリコン CMOS チップの動作周波数が高く なってきている。それに伴い,アンテナをそのチッ プ上に一体化する検討も多く始められている。既存 の CMOS プロセスでは絶縁層(配線層)の厚さが最大 でも 10µm 程度であるため,このままでは放射効率 を高くすることは極めて難しい。したがって,絶縁 層の厚さを厚くするプロセスの構築も含めて検討す る必要がある。

基礎検討として、絶縁体厚に対するアンテナ素子 の放射効率の変化を評価した。解析したアンテナ素 子はダイポール、ループ、スロット、キャビティ付 スロットの4素子で60GHzにおいて計算した。図15 にダイポール素子の HFSS による解析モデルと各材 料の物性値を示す。給電は lumped port(デルタギャッ プ給電)で行い、整合は考慮していない。損失は材料 損失のみを考え、放射効率は不整合損を含まない利 得と指向性利得との比で定義している。10µm から 400µm までの絶縁体層厚について解析した。図 16 に 計算結果を示す。従来の薄い絶縁体層厚(10 µm)のと きには放射効率は-13dB以下と低い。このときの材料 損失は主に導体損である。放射効率は絶縁体層が厚 くなるにつれ向上している。ダイポールとループは ほぼ同じ傾向を持っている。スロットの放射効率が 一番低いのは平行平板モードによる損失の影響であ る。200 um 以上の厚さではダイポールとループの放 射効率が他よりも高い。これはスロット、キャビテ ィ付スロットに比べて導体損失が小さいためである。

シリコンの材料損失は高いので、電磁界がシリコ ンで損失にならないよう金属で極力シールドする必

要がある。また、シリコンチップの大きさは限られているので、アンテナの素子数は 1~4 程度である。 ビーム幅が広いので、チップの周りにある導体などの影響で指向性が変化するので、指向性、利得の評価では注意が必要である。

5.まとめ

ミリ波帯での使用を目的としたアンテナ技術のた めの基礎を述べた。材料特性や製造法なども考慮し て設計に取り込む必要が出てくる。電気特性の改善 だけでは限界になる場合もあり,材料特性や製造法 の改善,開発も含めて検討をしていく必要がある。 アンテナ単体だけでなく,RF回路やビーム制御回路 などとの集積を少ない接続損で行うことも考えなけ ればならないと考える。

文 南

- [1] C.A.Balanis: "Antenna Theory", 第6章, Wiley, 2005年
- [2] R.E.Collin, "Foundations for Mircrowave Engineering," 第2版, 第3章, Mc-Graw Hill, 1992年
- [3] J.Hirokawa, M.Ando and N.Goto, "Waveguide-Fed Parallel Plate Slot Array Antenna," IEEE Trans. Antennas Propagat., vol.40, no.2, pp.218-223, Feb.1992.
- [4] P. M. Woodward and J. D. Lawson, "The Theoretical Precision with which an Arbitrary Radiation Pattern may be Obtained from a Source with Finite Size," Proc. IEE, pt. 3, vol. 95, pp. 363–370, 1948.
- [5] 広川, 安藤, "Single-Layer Feed Waveguide to Excite Plane TEM Wave for Parallel Plate Slot Array Antennas", 信学技 報, AP97-31, 1997-5.
- [6] J. Hirokawa and M. Ando, "Single-Layer Feed Waveguide consisting of Posts for Plane TEM Wave Excitation in Parallel Plates," IEEE Trans. Antennas Propagat., vol.46, no.5, pp.625-630, May 1998.
- [7] H.Uchimura, T.Takenoshita and M.Fujii, "Development of a Laminated Waveguide," IEEE Trans. Microw. Theory Tech. vol.46, no.12, pp. 2438-2443, Dec. 1998.
- [8] D.Deslandes and K.Wu, "Integrated Microstrip and Rectangular Waveguide in Planar Form," IEEE Microwave Wireless Compon. Lett., vol.11, no.2, pp.68–70, Feb. 2001.
- [9] S.Yamamoto, J.Hirokawa and M.Ando, "A Half-Sized Post-Wall Short-Slot Directional Coupler with Hollow Rectangular Holes in a Dielectric Substrate," IEICE Trans. Electron., vol.88, no.7, pp.1387-1394, Jul. 2005.
- [10] T.Kai, Doctoral Dissertation, Chap.4 Tokyo Institute of Technology, 2006.
- [11] M.Samardzija, J.Hirokawa and M.Ando, "Dominant Quasi-TEM Mode Generator for Thin Oversized Dielectric-Coated Rectangular Waveguide," 2007 IEEE AP-S Intl. Symp., 327-8, Jun.2007.
- [12] 張, 広川, 安藤, "積層薄板の拡散接合による 94GHz 導 波管スロットアンテナの試作", 信学技報, AP2008-35, 2008-6.
- [13] 後藤, "一層構造の導波管を用いた高能率平面アンテ ナ", 信学技報, AP88-39, 1988-7.
- [14] 後藤、"導波管給電プリントアンテナ", 信学技報, AP89-3, 1989-4.