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ABSTRACT 
 
Periodic structures have been extensively used in the history of microwave engineering.  Recently, 
there appears a significant renewed interest in this subject, due to highly publicized Photonic Crystals 
and Metamaterials.  This lecture introduces basic theory on the electromagnetic aspects and circuit 
representations of periodic structures.  Several practical examples are introduced.  Some fundamental 
features of potential use of the periodic structures are discussed. 
 
 
INTRODUCTION 
 
Periodic structures appear in nature in such 
forms as bee hives and crystals. They can be 
man-made such as the structures discussed in 
this lecture.  Let us first define the periodic 
structure as discussed in this lecture.  Periodic 
structure is made of an infinite or finite 
repetition of a unit cell in one, two or three 
dimensions.  For instance, Fig.1 provides a 
simple example of the periodic repetition of a 
lumped element placed along a transmission 
line. 

 
Fig.1 Transmission line loaded periodically 
with lumped elements 
 
The structure above is a one-dimensional 
periodic structure.  It is possible to obtain a 
two-dimensional periodic structure or possibly 
a three-dimensional one.  However, in this 
lecture, the one-dimensional cases are 
primarily treated because the simpler structure 
is more useful for understanding. 
 
EXAMPLE STRUCTURES 
 
Fig.2 presents some of practical periodic 
structures used in microwaves as well as optics. 

(a) is a two dimensional periodic structure and 
the structure is open to support certain 
radiation properties.  (b) is a closed structure 
so that no radiation is involved.  Only 
interesting guided wave phenomena are 
observed.  (c) is one of the most interesting 
periodic structures.  This structure is made of 
periodic perturbations applied to an open 
(dielectric) waveguide.  Therefore, both 
guided wave phenomena and radiation 
phenomena exist.  If the structure is scaled to 
optical frequency, this type of structure is 
called Grating. 
 

           
(a) 
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Fig.2 Typical periodic structures (a) 2-D open 
ended WG phased array, (b) Waveguide 
periodically loaded with fins, (c) Leaky wave 
antennas 

εr

jB jB jB 

d 

n+1 n 



TRANSMISSION LINE ANALYSIS 
 
In order to understand the basic wave 
propagation phenomena associated with a 
periodic structure, let us use the simplest 
structure, namely Fig.1.  Note that this 
periodic structure is made of infinite repetition 
of the unit cell.  Unit cell consists of a 
transmission line of a length d at the center of 
which a lumped shunt admittance B 
(normalized with respect to the characteristic 
impedance of the line) is placed.  If we 
consider a unit cell as a two port network, the 
so-called the ABCD matrix can be obtained by 
cascading three sections, namely one half (d/2) 
of the transmission line, jB and another half 
(d/2) of the transmission line.  Therefore, the 
input and output relationship of the n-th unit 
cell is given by 
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where  
 A = cosθ  -(B/2)sinθ 
  

B = j((B/2)cosθ +sinθ -B/2) 
 

 C = j((B/2)cosθ +sinθ +B/2) 
 
 D = cosθ  -(B/2)sinθ 
 
In the above θ = kd is the electrical length of 
the transmission line in the unit cell, k is the 
wave number and is equal to the propagation 
constant of this TEM line.   
 
If we assume that the periodic structure is 
infinitely long, the wave phenomena must be 
identical at the input to the n-th cell and at the 
input to the (n+1)th cell, except for the phase 
delay caused by propagation along the cell.  
Therefore, it can be written that 
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where γ = α +jβ is the complex propagation 
constant of the periodic structure.  Since (1) 
and (2) are identical, the eigenvalue equation 
is obtained as follows. 
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The above can be reduced to  
 
 coshγd = cosθ -(B/2)sinθ  (4) 
 
If the magnitude of the right hand side is 
smaller than unity, then α = 0 and γ = jβ.  
Hence, under this condition, the periodic 
structure supports a propagating wave.  On the 
other hand, if the magnitude of the right hand 
side of (4) is larger than unity, then no wave 
can propagate along the structure.  
 
Exercise:  Derive the equation for α and for β. 
 
From Fig.3 that plots the relationship (called 
the dispersion curve) between kd (proportional 
to frequency) and βd, the following two 
important characteristics are observed. 
 

 
 
Fig.3 Typical dispersion curve of a non-
radiating periodic structure 
 
Passband and Stopband: These two 
situations of γ described above are called the 
passband and stopband.  The frequency ranges 
corresponding to the solid lines in Fig.3 
indicate the passband while the frequency 
regions without solid line correspond to the 
stopband. 
 
Slow Wave Effect: In the absence of periodic 
lumped elements, the propagation constant 
along the structure is given by k.  Namely, β = 
β0 = k.  For a given k or kd, the value of β or 
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βd on the dispersion curve of the periodic 
structure is always larger than β0.  Therefore, 
the phase velocity vp = kc/β (c: speed of light 
in vacuum) of the traveling wave in the 
periodic structure is slower than the free space 
speed of light.   Hence, the periodic structure 
acts as a slow wave structure in its passband 
region.  One important application is the delay 
line.   
 
 
SPATIAL HARMONICS AND FLOQUET 
THEOREM 
 
Let us expand the above simple description to 
more general electromagnetic system with a 
periodic configuration.  We will analyze the 
electromagnetic fields associated with the 
structure shown in Fig.4 that is a dielectric 
waveguide with periodic perturbation along its 
axis.  The structure chosen here is periodic 
only in the z direction for simplicity. 
 

 
 
Fig.4 Dielectric waveguide with periodic 
perturbations along the axis 
 
In this structure, any electromagnetic field 
components can be described by  
 
  φ(x, y, z+d) = 0zjk de− φ(x, y, z)  (5) 
 
The exponential factor indicates the complex 
phase shift kz0 = β -jα between the neighboring 
unit cells.  Therefore, the field differs only by 
this factor along the z direction.  This 
expression is called Floquet theorem.  The 
field component satisfying (5) can be 
described in the following manner. 
 

  φ(x, y, z) = 0zjk ze− P(x, y¸z)  (6) 

where P is a periodic function such that P(x, y, 
z) = P(x, y, z+d).  Therefore, P can be written 
as  

  P(x, y, z) = 
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where an is a function describing the field 
variations in the x and y directions and 
depends on the structure and excitation.  From 
(6) and (7), the field can be written as 
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where  

kzn = kz0 + 
2
d
π

n,     n = 0, ±1, ±2, …. (9) 

The description in (8) is often called Floquet 
spatial harmonic expansion.   

Instead of a rigorous analysis of the fields 
associated with the structure, let us first 
investigate what kind of dispersion diagram 
exists relating the frequency and the 
propagation factor (along z).  For a further 
simplification of the problem, it is assumed 
that the structure is invariant in the y direction.  
In the absence of periodic perturbation, we 
recover a planar dielectric waveguide.  A 
typical dispersion (k-β) diagram of the 
dominant guided mode is as shown in Fig.5.  
In this diagram there are four regions divided 
by the straight lines k = ±β (often called the air 
line).  If the value of β for a given k is in 
Region I, the wave is guided along +z 
direction.  Since k < β, the phase velocity is 
smaller than free space speed of light and the 
wave is called slow.  If the dispersion curve 
gets into Region II as we will see later, then k 
> β so that the wave is fast.  To satisfy such a 
condition, the field in the region outside the 
dielectric region is no longer decaying in the 
+x direction but rather becomes propagating 
type in +x.  Regions III and Region IV 
correspond to Regions II and I except that β 
takes a negative value (and the wave is 
backward going).   
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Fig.5 k-β diagram for an unperturbed dielectric 
waveguide 
 
Let us now consider the case where individual 
perturbations are infinitesimally small.  Hence, 
it is possible to introduce an approximation 
that kz0 = β -jα ≈ β0 where β0 is the 
propagation constant of the unperturbed 
dielectric waveguide.  Nevertheless, the field 
associated with the periodic structure should 
be described by Floquet spatial harmonic 
expansion given by (8).  Hence, kzn ≈ βn = β0 + 
2πn/d, n = 0, ±1, ±2, ….   For each n, the 
relationship of βn with k can be obtained by 
shifting the k-β diagram of the unperturbed 
structure to in the horizontal direction as 
shown in Fig.6. 
 

 
Fig.6 Spatial harmonic diagram normalized by 
the period d 
 
This figure is a very useful one for 
understanding the wave behaviors associated 
with the (infinite) periodic structure.  If the k 
value is below a certain value kc, all spatial 
harmonics are in the slow wave region, if the 
mode of the unperturbed dielectric waveguide 
is guided.  However, once k exceeds kc due to 
an increased operating frequency, β-1 spatial 
harmonic is now in the fast wave region so 
that this periodic structure can now support the 
wave that is radiating away from the dielectric 

surface, or the dielectric waveguide is now 
used as a (leaky wave) antenna, even though 
the original waveguide is not leaky.  The main 
beam direction of this antenna is determined 
by the frequency.  If the curve β-1 intersect βd 
= -kd (air line), then the beam is in the 
backward direction while the beam is forward 
endfire direction when the frequency is 
increased so that β-1 intersects the air line βd = 
kd.  The direction of radiation measured from 
the normal of the waveguide surface is given 
by 
 
 θ = sin-1(β-1/k)   (10) 
 
 
STOP BAND PHENOMENA (BANDGAP) 
 
The above discussions are in the case where 
each perturbation is infinitesimally small.  In 
practice, at each perturbation the wave is 
scattered.  Hence, the dispersion diagram 
becomes more complex.  First, it is possible 
that the propagation can be backward so that -
β0 and all of its spatial harmonics may appear 
as shown with broken lines in Fig.6.  First, the 
-β-1 curve indicates a backward wave meaning 
that the group velocity and the phase velocity 
is in the opposite direction for a positive β.  
Let us now pay attention to the point indicated 
by S1 in Fig.6.  At this value of k or 
corresponding frequency, β0 curve and -β-1 
curve intersect.  Therefore, the wave coupling 
phenomenon takes place that is energy 
exchange between the waves with opposite 
group velocities.  As a result, the dispersion 
curves are split as shown in Fig.7 where the 
solid lines are the outcome of the wave 
coupling.  There is no real value solution of β 
between the two lines.   No wave therefore can 
propagate along the axial direction of the 
waveguide in the region identified as the “stop 
band” in the figure.  This corresponds to the 
case of β = 0 in (4).  The shape and width of 
the stop band depend on the physical 
configuration of the periodic structure.  An 
additional phenomenon is observed in the 
passband region below the stop band.  Since 
the dispersion curve is pushed downward, the 
phase velocity becomes smaller.  This is a 
slow wave phenomenon.   Periodic structure is 
often used for a delay line device.   
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Fig.7  Stop band and slow wave phenomena 
 
This stopband phenomenon is the basis of the 
so-called the Photonic Bandgap (PBG) 
structure of the Photonic Crystal although 
these are generally referred to as two-
dimensional periodic structures.   
 
The wave coupling also takes place at other 
intersection points in Fig.6.  For instance, at 
S0 in Fig.6, forward and backward leaky 
waves are intersected and often create a leaky 
wave stop band.  This phenomenon is quite 
complex.  An immediate impact on the leaky 
wave antenna is its difficulty to radiate the 
beam in the broadside direction corresponding 
to the case of β = 0.  Most leaky wave 
antennas try to avoid its use for the broadside 
radiation. 
 
 
ELECTROMAGNETIC FIELD 
ANALYSIS  
 
In this section, an excitation problem of a one 
dimensional periodic structure is introduced by 
using an example of a parallel plate phased 
array excited by an incoming plane wave.  The 
solution makes use of Floquet formalism.  
Fig.8 shows the side view of a phased array 
made of infinitely many parallel plate 
waveguides (z > 0) extending to z = +∞ (or in 
practice terminated by matched loads).  The 
size of the waveguide is a and is infinite and 
invariable in the y direction.   The waveguide 
wall thickness is assumed zero.   
 
 
 
 

 
 
Fig.8  Infinite periodic array problem 
 
An incident plane wave illuminates the 
waveguide array from z < 0 region with an 
incident angle of θi measured from the z axis.  
Since the structure is periodic, the scattered 
field in the region z < 0 can be expressed in 
terms of Floquet spatial harmonics. 
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Note that the incident field given by  
 
Ey

(i)(x, z) = A exp[-jkx sinθi –jkz cosθi] (13) 
 
is actually  periodic with the zeroth order 
corresponding to p = 0. 
 
Inside the q-th waveguide 
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Now, we match the total field Ey
(i)(x¸z) + 

Ey
(s)(x, z ) and the corresponding magnetic 

field Hx with Ey(x, z) and Hx in the waveguide 
region at z = 0.  Notice that because of (14) we 
only need to match the fields only over one 
waveguide opening such as 0 ≤ x < a.   This 
process leads to an infinite set of linear 
equations with unknown Ap and Bn

q while A is 
specified as the intensity of the incoming wave.   
 
Exercise:  Drive the equations by way of the 
field matching at z = 0, 0 ≤ x < a. 
 
 
SOME REMARKS 
 
Some of the interesting phenomena associated 
with the periodic structure are 

1. Stopband and Passband effects 
2. Slow wave phenomena 
3. Leaky wave phenomena  
4. Backward wave phenomena 

 
A word of caution on the last item is given 
here.  Recently, there is excitement in physics 
and electromagnetic field communities on the 
so-called metamaterials that are loosely 
interpreted as artificially synthesized material 
structures to realize characteristics not 
available in natural materials.  Of these, the 
so-called Left Handed Material or Double 
Negative Materials (as effectively negative 
permittivity and negative permeability are 
realized simultaneously) provide many 
interesting wave phenomenal including the 
backward wave.  However, this backward 
wave is different from those observed in the 
higher order spatial harmonics such as -β-1.  
The backward wave for LHM is the 
phenomena appearing in the fundamental 
mode.  Although no periodicity is required for 
LHM, often a periodic structure is used mainly 
for convenience of fabrication.  In that case, 
the size of the period is much smaller than the 
operating wavelength.  On the other hand, 
Photonic Crystal is operated with a period 
close to one half of the wavelength.   
 
Let us add brief comments of metamaterials, 
or more specifically left handed materials.  
Although several approaches exist for 
realization of the LHM, one way appealing 

way is to use a “transmission” line approach 
that supports a backward wave.   
 
Fig.9 shows a model of the transmission line 
by means of distributed series L∆z and shunt 
C∆z.  If ∆z is infinitesimally small, the 
dispersion curve is a straight line β = k.  Now, 
if C and L are interchanged as shown in Fig.10, 
the dispersion curve is like the one in the 
figure.  Not only is this curve dispersive, the 
directions of the phase velocity and the group 
velocity are opposite.  This is a characteristic 
of the left handed transmission. 
 
 
 

 
 
Fig.9  Distributed LC model for transmission 
line 
 
 

 
 
Fig.10 Distributed CL model of left handed 
line 
 
 
Notice that if all L and C values are repetitive, 
both structures look like periodic structure.  
However, in the present case, the period given 
by ∆ is infinitesimal.  Therefore, the 
characteristics associated with periodic 
structures do not appear.  Rather, the structure 
is called an effective medium.  In fact, in order 
to synthesize the effective medium, it is not 
necessary to use periodic structures as long as 
the unit cell is much smaller than the operating 
wavelength. 
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CONCLUSIONS  
 
In the above, a brief explanation of the 
fundamental aspects of periodic structures was 
presented.  Physical insight is emphasized.  To 
this end the topics are restricted to one-
dimensional cases.  Extension to higher 
dimensions not only makes equations more 
complicated but also make to problem 
vectorial in general.   
 
FURTHER READING 
 
Due to the nature of the lecture, no specific 
references are provided.  However, many 
graduate level textbooks on electromagnetic 
theory may provide sufficient descriptions of 
the periodic structures.  Some examples are: 
 
R. E. Collin, Field Theory of Guided Waves, 
IEEE Press 
 
D. Pozar, Microwave Engineering, Wiley. 
 
 


